

Application of Design of Experiments for Formulation Development and Mechanistic Evaluation of Iontophoretic Tacrine Hydrochloride Delivery

The objective of this research paper is to develop a mathematical equation to understand the impact of variables and establish statistical control over transdermal iontophoretic delivery of tacrine hydrochloride. Design of experiments (DoE) methodology is implemented to study the effect of independent variables on the dependent variable.

The factors (independent variables) examined are: X_1 = current strength (mA), X_2 = buffer molarity (mM) and X_3 = drug concentration (mg/ml). All the factors are continuous. The response (dependent variable) examined is: Y = tacrine permeation flux ($\mu\text{g}/\text{cm}^2/\text{h}$). The applied DoE method is Central Composite design.

Isalos version used: 2.0.6

Scientific article: <https://www.tandfonline.com/doi/abs/10.1080/03639045.2016.1181646>

Step 1: Central Composite Design

In the first tab named “Action” define the factors in the column headers and fill each column with the low and high levels of the corresponding factors. This tab can be renamed “Central Composite”. Afterwards, apply the Central Composite method: DOE → Response Surface → Central Composite

	Col1	Col2 (D)	Col3 (I)	Col4 (I)
User Header	User Row ID	X1	X2	X3
1		0.1	25	1
2		0.3	100	20

DoE Central Composite

Number of Center Points per Block: 6

Number of Replicates: 1

Number of Blocks: 1

Random Standard order

Select Design: ccf

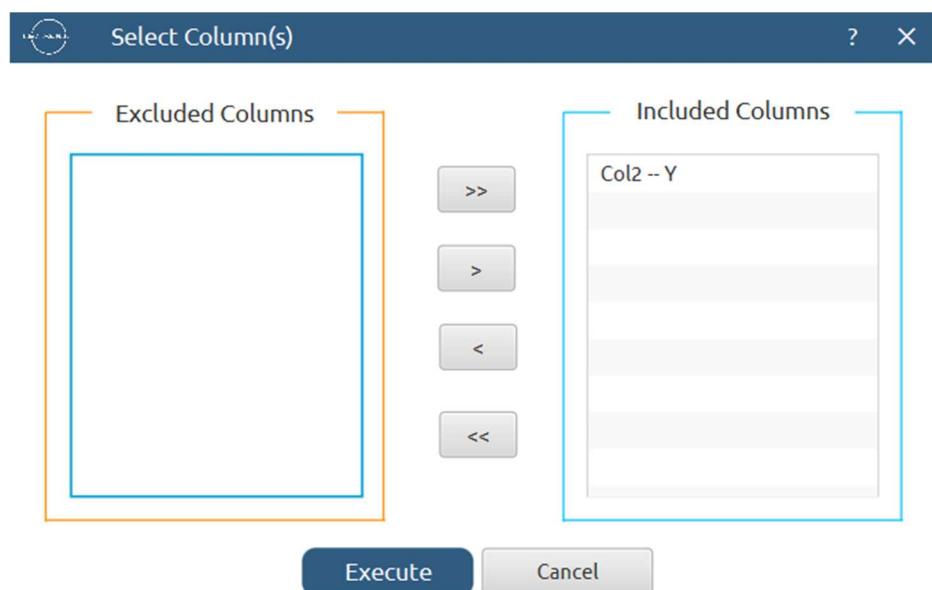
Excluded Columns

Included Columns

Col2 - X1

Col3 - X2

Col4 - X3


Results (right spreadsheet):

Standard Order	Block Number	Replicate Number	Point Type	X1	X2	X3
1	Block: 1	Replicate: 1	Design Point	0.1	25.0	1.0
2	Block: 1	Replicate: 1	Design Point	0.3	25.0	1.0
3	Block: 1	Replicate: 1	Design Point	0.1	100.0	1.0
4	Block: 1	Replicate: 1	Design Point	0.3	100.0	1.0
5	Block: 1	Replicate: 1	Design Point	0.1	25.0	20.0
6	Block: 1	Replicate: 1	Design Point	0.3	25.0	20.0
7	Block: 1	Replicate: 1	Design Point	0.1	100.0	20.0
8	Block: 1	Replicate: 1	Design Point	0.3	100.0	20.0
9	Block: 1	Replicate: 1	Design Point	0.1	62.5	10.5
10	Block: 1	Replicate: 1	Design Point	0.3	62.5	10.5
11	Block: 1	Replicate: 1	Design Point	0.2	25.0	10.5
12	Block: 1	Replicate: 1	Design Point	0.2	100.0	10.5
13	Block: 1	Replicate: 1	Design Point	0.2	62.5	1.0
14	Block: 1	Replicate: 1	Design Point	0.2	62.5	20.0
15	Block: 1	----	Center Point	0.2	62.5	10.5
16	Block: 1	----	Center Point	0.2	62.5	10.5
17	Block: 1	----	Center Point	0.2	62.5	10.5
18	Block: 1	----	Center Point	0.2	62.5	10.5
19	Block: 1	----	Center Point	0.2	62.5	10.5
20	Block: 1	----	Center Point	0.2	62.5	10.5

Step 2: Definition of response variables

Create a new tab named “Responses” and define the responses in the column headers. Fill each column with the values of the corresponding responses that were observed and make sure the values follow the order of the experiments as given by the Central Composite method. Then, select all columns to be transferred to the right spreadsheet: [Data Transformation](#) → [Data Manipulation](#) → [Select Column\(s\)](#)

User Header	Col1	Col2 (D)
	User Row ID	Y
1		92.22
2		219.57
3		47.84
4		129.77
5		229.89
6		477.09
7		180.45
8		405.2
9		156.68
10		364.67
11		312.96
12		190.79
13		75.77
14		315.14
15		267.38
16		267.38
17		278.66
18		270.89
19		270.89
20		278.66

Step 3: Data isolation

Create a new tab named “Data” and import the results from the “Central Composite” and “Responses” spreadsheets by right clicking on the left spreadsheet. Then, select only the factors and responses columns to be transferred to the right spreadsheet: Data Transformation → Data Manipulation → Select Column(s)

	Col1	Col2	Col3	Col4	Col5	Col6
User Header	User Row ID					
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

Multiple Spreadsheet Joiner

Join Configuration Steps

Step 1: Central Composite \bowtie Factors (Cor)

Join Type

Concatenation Left Join Right Join Inner Join Full Outer Join

Left Spreadsheet: Central Composite Right Spreadsheet: Factors

Join Column

Common header name Different header names

Add Delete Execute Cancel

Select Column(s)

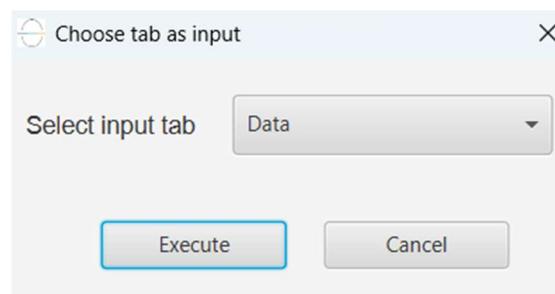
Excluded Columns

Included Columns

Col2 -- X1
Col3 -- X2
Col4 -- X3
Col5 -- Y

>> > < <<

Execute Cancel


Results:

	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)
User Header	User Row ID	X1	X2	X3	Y
1		0.1	25.0	1.0	92.22
2		0.3	25.0	1.0	219.57
3		0.1	100.0	1.0	47.84
4		0.3	100.0	1.0	129.77
5		0.1	25.0	20.0	229.89
6		0.3	25.0	20.0	477.09
7		0.1	100.0	20.0	180.45
8		0.3	100.0	20.0	405.2
9		0.1	62.5	10.5	156.68
10		0.3	62.5	10.5	364.67
11		0.2	25.0	10.5	312.96
12		0.2	100.0	10.5	190.79
13		0.2	62.5	1.0	75.77
14		0.2	62.5	20.0	315.14
15		0.2	62.5	10.5	267.38
16		0.2	62.5	10.5	267.38
17		0.2	62.5	10.5	278.66
18		0.2	62.5	10.5	270.89
19		0.2	62.5	10.5	270.89
20		0.2	62.5	10.5	278.66

Step 4: Normalization

Create a new tab named “Normalized data” and import the results from the “Data” spreadsheet. Afterwards, normalize the factor columns to take values in the range [-1, 1]: [Data Transformation → Normalizers → Min-Max](#)

	Col1	Col2	Col3	Col4	Col5	Col6
User Header	User Row ID					
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

Results:

	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)
User Header	User Row ID	X1	X2	X3	Y
1		-1.0	-1.0	-1.0	92.22
2		1.0	-1.0	-1.0	219.57
3		-1.0	1.0	-1.0	47.84
4		1.0	1.0	-1.0	129.77
5		-1.0	-1.0	1.0	229.89
6		1.0	-1.0	1.0	477.09
7		-1.0	1.0	1.0	180.45
8		1.0	1.0	1.0	405.2
9		-1.0	0.0	0.0	156.68
10		1.0	0.0	0.0	364.67
11		0E-7	-1.0	0.0	312.96
12		0E-7	1.0	0.0	190.79
13		0E-7	0.0	-1.0	75.77
14		0E-7	0.0	1.0	315.14
15		0E-7	0.0	0.0	267.38
16		0E-7	0.0	0.0	267.38
17		0E-7	0.0	0.0	278.66
18		0E-7	0.0	0.0	270.89
19		0E-7	0.0	0.0	270.89
20		0E-7	0.0	0.0	278.66

Step 5: Regression

The goal here is to produce a regression equation that includes main effects, two-factor interactions and quadratic effects for Y_1 :

$$Y = b_0 + b_1X_1 + b_2X_2 + b_3X_3 + b_{12}X_1X_2 + b_{13}X_1X_3 + b_{23}X_2X_3 + b_{11}X_1^2 + b_{22}X_2^2 + b_{33}X_3^2$$

Create a new tab named “Regression – Coded” and import the results from the spreadsheet “Normalized data”. Afterwards, fit a generalized linear model to the data: Analytics → Regression → Statistical fitting → Generalized Linear Models

Generalized Linear Models Regression

Type: Linear

Confidence Level...: 95

Dependent Variable: Col5 -- Y1

Scale Parameter Method: Fixed value

Value: 1.0

Excluded Columns:

- Col6 -- Y2
- Col7 -- Y3
- Col8 -- Y4
- Col9 -- Y5

Factors:

Covariates:

- Col2 -- X1
- Col3 -- X2
- Col4 -- X3

Formula: X1+X2+X3+X1:X1+X2:X2+X3:X3+X1:X3+X2:X3+X1:X3

Custom Include All Main Effects Full Factorial

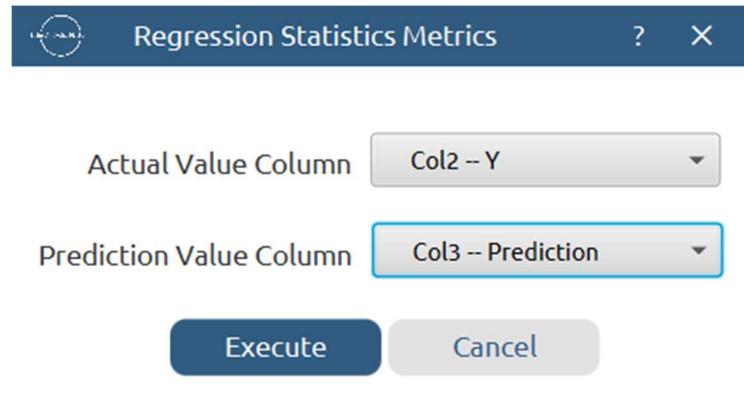
Execute Cancel

Results:

Y	Prediction		
92.22	90.0577045	Goodness of Fit	
219.57	219.2017045		Value
47.84	28.2767045	Deviance	4259.2897461
129.77	123.4857045	Scaled Deviance	4259.2897461
229.89	229.6977045	Pearson Chi-Square	4259.2897461
477.09	490.1767045	Scaled Pearson Chi-Square	4259.2897461
180.45	174.3417045	Log Likelihood	-2148.023643
405.2	400.8857045	Akaike's Information Criterion (AIC)	4316.0472875
156.68	184.7061818	Finite Sample Corrected AIC (AICC)	4340.4917319
364.67	362.5501818	Bayesian Information Criterion (BIC)	4326.0046102
312.96	302.5961818	Consistent AIC (CAIC)	4336.0046102
190.79	227.0601818		
75.77	104.1481818		
315.14	312.6681818		
267.38	263.6745455		
267.38	263.6745455		
278.66	263.6745455		
270.89	263.6745455		
270.89	263.6745455		
278.66	263.6745455		

Parameter Estimates							
Variable	Coefficient	Std. Error	Lower CI	Upper CI	Test Statistic	df	p-value
intercept	263.6745455	0.3437758	263.0007572	264.3483337	588282.2500979	1	0.0
X1	88.9220000	0.3162278	88.3022050	89.5417950	79071.2208400	1	0.0
X2	-37.7680000	0.3162278	-38.3877950	-37.1482050	14264.2182400	1	0.0
X3	104.2600000	0.3162278	103.6402050	104.8797950	108701.4760000	1	0.0
X1*X3	32.8337500	0.3535534	32.1407981	33.5267019	8624.4411125	1	0.0
X1*X2	-8.48375	0.3535534	-9.1767019	-7.7907981	575.7921125	1	0.0
X2*X3	1.6062500	0.3535534	0.9132981	2.2992019	20.6403125	1	0.0000055
X1*X1	9.9536364	0.6030227	8.7717336	11.1355391	272.4559114	1	0.0
X2*X2	1.1536364	0.6030227	-0.0282664	2.3355391	3.6599114	1	0.0557366
X3*X3	-55.2663636	0.6030227	-56.4482664	-54.0844609	8399.5201114	1	0.0

Repeat this step for the uncoded data. Results:


Y	Prediction
190.79	227.0601818
75.77	104.1481818
267.38	263.6745455
156.68	184.7061818
267.38	263.6745455
364.67	362.5501818
219.57	219.2017045
278.66	263.6745455
229.89	229.6977045
92.22	90.0577045
270.89	263.6745455
477.09	490.1767045
315.14	312.6681818
405.2	400.8857045
270.89	263.6745455
312.96	302.5961818
47.84	28.2767045
129.77	123.4857045
278.66	263.6745455
180.45	174.3417045

Goodness of Fit	
	Value
Deviance	4259.2897461
Scaled Deviance	4259.2897461
Pearson Chi-Square	4259.2897461
Scaled Pearson Chi-Square	4259.2897461
Log Likelihood	-2148.023643
Akaike's Information Criterion (AIC)	4316.0472875
Finite Sample Corrected AIC (AICC)	4340.4917319
Bayesian Information Criterion (BIC)	4326.0046102
Consistent AIC (CAIC)	4336.0046102

Parameter Estimates							
Variable	Coefficient	Std. Error	Lower CI	Upper CI	Test Statistic	df	p-value
intercept	56.3073923	2.5481407	51.3131283	61.3016563	488.2969565	1	0.0
X1	269.5710367	25.3339789	219.9173504	319.2247229	113.2243011	1	0.0
X2	-0.7045676	0.0583818	-0.8189937	-0.5901414	145.6434274	1	0.0
X3	16.6403335	0.1737354	16.2998184	16.9808486	9173.7621902	1	0.0
X1*X3	34.5618421	0.3721615	33.8324190	35.2912652	8624.4411125	1	0.0
X1*X2	-2.2623333	0.0942809	-2.4471205	-2.0775462	575.7921125	1	0.0
X2*X3	0.0045088	0.0009924	0.0025636	0.0064539	20.6403125	1	0.0000055
X1*X1	995.3636364	60.3022689	877.1733611	1113.5539116	272.4559114	1	0.0
X2*X2	0.0008204	0.0004288	-0.0000201	0.0016608	3.6599114	1	0.0557366
X3*X3	-0.6123697	0.0066817	-0.6254656	-0.5992738	8399.5201114	1	0.0

Step 6: Regression Metrics

Create a tab named “Metrics – Coded” and import the results from the spreadsheet “Regression – Coded”. Then, produce the regression metrics for the regression equation of the coded data: Statistics → Model Metrics → Regression Metrics

Results:

	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)
User Header	User Row ID	Mean Squared Error	Root Mean Squared Error	Mean Absolute Error	R Squared
1		212.9644873	14.5933028	10.5761250	0.9812924

Repeat this step for the uncoded data. Results:

	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)
User Header	User Row ID	Mean Squared Error	Root Mean Squared Error	Mean Absolute Error	R Squared
1		212.9644873	14.5933028	10.5761250	0.9812924

Step 7: Analysis of Covariance

Create a new tab named “ANCOVA – Coded” and import the results from the spreadsheet “Normalized data”. Afterwards perform analysis of covariance for Y: Statistics → Analysis of (Co)Variance → ANCOVA

ANCOVA

Confidence Level (%) 95

Dependent Variable Col5 -- Y

Sum of Squares for Tests Adjusted (Type III)

Coding for Factors (-1, 0, +1)

Excluded Columns

Factors

Covariates

Custom Include All Main Effects Full Factorial

Formula

X1+X2+X3+X1:X1+X2:X2+X3:X3+X1:X2+X2:X3+X1:X3

Execute Cancel

Results:

	Col1	Col2 (S)	Col3 (I)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)
User Header	User Row ID	Source	DF	Adj SS	Adj MS	F-Value	P-Value
1		X1	1	2964.500000	2964.500000	7.4798150	0.0410390
2		X2	1	33024.500000	33024.500000	83.3250631	0.0002643
3		X3	1	178802.0	178802.0	451.1404542	0.0000043
4		X1*X1	1	5712.4102564	5712.4102564	14.4131461	0.0126742
5		X2*X2	1	9729.6410256	9729.6410256	24.5491363	0.0042676
6		X3*X3	1	8448.1025641	8448.1025641	21.3156499	0.0057516
7		X1*X2	1	36.0000000	36.0000000	0.0908326	0.7752529
8		X2*X3	1	10201.000000	10201.000000	25.7384357	0.0038562
9		X1*X3	1	1089.0000000	1089.0000000	2.7476871	0.1582943
10		Error	5	1981.6666667	396.3333333		
11		Total	14	248864.40000			

References

(1) Patel, N.; Jain, S.; Madan, P.; Lin, S. Application of Design of Experiments for Formulation Development and Mechanistic Evaluation of Iontophoretic Tacrine Hydrochloride Delivery. *Drug Development and Industrial Pharmacy* 2016, 42 (11), 1894–1902. <https://doi.org/10.1080/03639045.2016.1181646>.